Ancient crash, epic wave - Health & Science - International Herald TribuneBy Sandra Blakeslee
Published: Saturday, October 14, 2006
T
At the southern end of Madagascar lie four enormous wedge-shaped sediment deposits, called chevrons, that are composed of material from the ocean floor. Each covers twice the area of Manhattan with sediment as deep as the Chrysler Building is high.
On close inspection, the chevron deposits contain deep ocean microfossils that are fused with a medley of metals typically formed by cosmic impacts. And all of them point in the same direction - toward the middle of the Indian Ocean where a newly discovered crater, 18 miles in diameter, lies 12,500 feet below the surface.
The explanation is obvious to some scientists. A large asteroid or comet, the kind that could kill a quarter of the world's population, smashed into the Indian Ocean 4,800 years ago, producing a tsunami at least 600 feet high, about 13 times as big as the one that inundated Indonesia nearly two years ago. The wave carried the huge deposits of sediment to land.
Most astronomers doubt that any large comets or asteroids have crashed into the Earth in the last 10,000 years. But the self-described "band of misfits" that make up the two-year-old Holocene Impact Working Group say that astronomers simply have not known how or where to look for evidence of such impacts along the world's shorelines and in the deep ocean.
Scientists in the working group say the evidence for such impacts during the last 10,000 years, known as the Holocene epoch, is strong enough to overturn current estimates of how often the Earth suffers a violent impact on the order of a 10-megaton explosion. Instead of once in 500,000 to one million years, as astronomers now calculate, catastrophic impacts could happen every few thousand years.
The researchers, who formed the working group after finding one another through an international conference, are based in the United States, Australia, Russia, France and Ireland. They are established experts in geology, geophysics, geomorphology, tsunamis, tree rings, soil science and archaeology, including the structural analysis of myth. Their efforts are just getting under way, but they will present some of their work at the American Geophysical Union meeting in December in San Francisco.
This year the group started using Google Earth, a free source of satellite images, to search around the globe for chevrons, which they interpret as evidence of past giant tsunamis. Scores of such sites have turned up in Australia, Africa, Europe and the United States, including the Hudson River Valley and Long Island.
When the chevrons all point in the same direction to open water, Dallas Abbott, an adjunct research scientist at Lamont-Doherty Earth Observatory in Palisades, N.Y., uses a different satellite technology to look for oceanic craters. With increasing frequency, she finds them, including an especially large one dating back 4,800 years.
So far, astronomers are skeptical but are willing to look at the evidence, said David Morrison, a leading authority on asteroids and comets at the NASA Ames Research Center in Mountain View, Calif. Surveys show that as many as 185 large asteroids or comets hit the Earth in the far distant past, although most of the craters are on land. No one has spent much time looking for craters in the deep ocean, Morrison said, assuming young ones don't exist and that old ones would be filled with sediment.
Astronomers monitor every small space object with an orbit close to the Earth. "We know what's out there, when they return, how close they come," Morrison said. Given their observations, "there is no reason to think we have had major hits in the last 10,000 years," he continued, adding, "But if Dallas is right and they find 10 such events, we'll have a real contradiction on our hands."
Peter Bobrowski, a senior research scientist in natural hazards at the Geological Survey of Canada, said "chevrons are fantastic features" but do not prove that megatsunamis are real. There are other interpretations for how chevrons are formed, including erosion and glaciation. Bobrowski said. It is up to the working group to prove its claims, he said.
William Ryan, a marine geologist at the Lamont Observatory, compared Abbott's work to that of other pioneering scientists who had to change the way their colleagues thought about a subject.
http://www.nytimes.com/2006/11/14/health/14iht-web.1114meteor.3522140.html?_r=1